Summary

- Why do we need high spatial resolution?
- A brief introduction to gravitational lensing
- Imaging galaxies at $1 < z < 1.5$
- Molecular gas at $z = 5$
- Clumps at $1 < z < 4$
High-redshift galaxy morphologies

Elmegreen et al. 2009

Förster Schreiber et al. 2011

kpc-scale clumps are ubiquitous at high-z, but barely resolved.
Clump origins: cold flows?

Gravitationally unstable disk fragments into clumps

Clumps migrate to center of galaxy to form bulge

Steady state maintained by accretion through cold streams

N.B.: Cold flows have never been observed

Ceverino et al. 2011
The Problem:

M82 will subtend 0.3” at z=2
(6 pixels of HST)

To observe a Milky-Way like progenitor galaxy in detail at z=2, we need a big telescope
Gravitational Lensing
Really, really big telescopes

- Boosts total flux AND spatial resolution

- $\sim 10^{21} \text{m}$
Starburst region

Giant HII region

Compact HII region

Globular cluster

Angular size (arcsec)

Wavelength (microns)
Example: Mass modelling and source plane reconstruction of $z=3$ galaxy

Original image \rightarrow Galaxy Cluster \rightarrow Lens model

SF and dynamics maps with spatial scale of 100pc!

Unlensed Image

SF map \rightarrow dynamics

Stark et al. 2008
HII Regions

Jones et al. 2010

Keck/OSIRIS LGS-AO targets
Hα narrowband imaging at $1 < z < 1.5$

Livermore et al. 2012a
High-z HII Regions

Livermore et al. 2012a
What drives brighter clumps at high-z?

Toomre stability criterion:

\[Q = \frac{\kappa r \sigma}{\pi G \Sigma} \]

\[1.5 V_{\text{max}}/R \]

\[Q < 1 \quad \rightarrow \quad \text{fragmentation} \]

In a marginally stable disk (Q=1), the Jeans mass is:

\[M_0 \sim \Sigma^3 \kappa^{-4} \]

dominated by gas component

\[\rightarrow \text{Drivers of star formation at high-z are gas fraction and dynamics} \]
Integral Field Spectroscopy

- At every wavelength you get an image

- At every pixel you get a spectrum
Integral Field Units

NIFS
SINFONI
OSIRIS
Galaxy dynamics at $z = 1-4$
The Tully-Fisher Relation

![Graph showing the Tully-Fisher relation with marked values for different redshift ranges.]

- No (coherent) evidence for evolution with redshift
- Dynamics dominated by baryons
Clumps in the IFU sample

Evolution in surface brightness continues to higher-\(z \)
Clumps in the sub-mm: The Eyelash

3x brighter than any other SMG

Observed with the Smithsonian Sub-mm Array (SMA) at 3 configurations: compact (1.5″), Extended (0.7″), Very Extended (VEX; 0.2″)

In highest configuration, beam is 0.2″ (90-150pc).

Swinbank et al. 2011
Intense Star-Formation Within Compact Regions at $z=2-5$

Nebular Emission Lines

Sub-mm emission

$z=2-3$ Lensed LBGs

$z=5$

$z=2.3$ Lensed Sub-mm Galaxy
Clump evolution

\[M_0 \sim \Sigma^3 \kappa^{-4} \]
Clump evolution

![Graph showing clump evolution with parameters M_0 and Σ_{clump}.](image)
MS1358: a lensed galaxy at $z=5$
MS1358: a lensed galaxy at $z=5$
MS1358: a lensed galaxy at z=5

Swinbank et al. (2009)
Molecular gas at z=5

Livermore et al. 2012b

PdBI CO(5-4) coadded channel map

Gas fraction vs. z

ΣSFR vs. Σgas

Livermore et al. 2012b
Conclusions

- Gravitational lensing allows us to probe $z > 1$ galaxies on 100pc scales and resolve individual HII regions.

- In a sample of 17 lensed $z = 1\text{-}4$ galaxies, all have observable (if small) velocity gradients.

- Large, bright clumps are seen in high-z galaxies…

- …possibly due to high gas fractions.