

Introduction

Ceramics are favorable for use in extreme environments, as they

- are **lightweight**
- are resistant to high temperatures and corrosion
- offer comparable mechanical properties to their metal alloy counterparts

Applications include

- electronic device packaging
- gas turbine components
- heat shields for aerospace structures

Challenges

Current additive manufacturing processes not suitable for ceramics due to

- extremely high melting point (compared to metals and polymers)
- low laser absorption characteristics
- low production efficiency

Project Goals / Outline

Develop recipe for preceramic polymer solution which can be • easily extruded using custom-made 3D printer

• cured to produce strong, dense ceramic parts

Develop recipe for support bath which can

- be printed into using preceramic polymer solution
- maintain geometry of parts during printing and curing

Determine mechanical properties of printed parts and compare to those cast conventionally

Process Flow

Create preceramic polymer solution

Create support bath

Print 3D parts into support bath and cure

Characterize support bath (rheological test) and parts (three-point flexural test, differential scanning calorimetry (DSC) / thermal gravimetric analysis (TGA))

Printing and Curing Process

Fig. 1. Schematic of the freeform printing process

Freeform 3D Printing of Pure Ceramics Scott Burlison¹, Mohammadreza Mahmoudi¹, Chao Wang¹, Majid Minary¹

¹Department of Mechanical Engineering, University of Texas at Dallas

Sample Part Geometries

Fig. 2. (A) – (C) CAD image and photos of a 3D printed truss-beam structure after curing and pyrolysis, respectively. (D) The final printed specimen shown over a flame. (E) Several geometries after curing and after pyrolysis. Printing duration for the parts ranged within $\sim 8 - 115$ seconds.

<u>Support</u> $\sigma = 5.1 + 0.05 \dot{\gamma}^{0.9}$

Shear Rate (1/s

Fig. 3. (A) Photo of the preceramic polymer solution in vial. Viscosity of the polymer solution is ~800 cP (1 cP = 10^{-3} Pa.s). (B) – (C) Photos of the support yield stress support bath in beakers. Static viscosity of the bath is ~1000 Pa.s. (D) Comparison of the preceramic polymer viscosity to other common liquids. (E) – (G) Rheological properties of the support bath ; (E) shear stress vs. shear rate, (F) viscosity vs. shear rate, and (G) storage and loss moduli.

2020 Jonsson School Undergraduate Research Awards

Preceramic Polymer / Ceramic Characterization

Fig. 4. (A) Thermogravimetric analysis (TGA/DTG) curve and (B) differential scanning calorimetry (DCS) curve for the preceramic polymer. (C) A 3D-printed ceramic beam under three-point bending loading for flexural strength measurements. (D) SEM image of the ceramic beam fracture surface. (E) Weibull plot for strength of 3D printed and casted ceramic. N = 33 for 3D printed ceramic and N = 18 for cast ceramic.

- for polymer-derived ceramics
- high temperature curing
- strength of printed specimens (~257 MPa)

- 2010. **93**(7): p. 1805-1837.
- 2001
- Advances, 2015. 1(8): p. e1500655.
- Society of Testing Materials.
- 2932.

Conclusion

• Developed low-cost, efficient, scalable, and novel freeform fabrication method

• Created support bath that **maintains part geometry** during printing and one-step

• Mechanically characterized ceramic beams to confirm **high characteristic**

References

[1] Colombo, P., et al. "Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics." Journal of the American Ceramic Society,

[2] Zocca, A., et al. "Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities." Journal of the American Ceramic Society, 2015. 98(7): p. 1983-

[3] Bhattacharjee, T., et al. "Writing in the Granular Gel Medium." Science

[4] Li, J., et al. "Preparation of Micro-/Mesoporous SiOC Bulk Ceramics." Journal of the American Ceramic Society, 2015. 98(6): p. 1753-1761.

[5] ASTM, Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature—Cylindrical Rod Strength, in C1684-182019, American

[6] Khalili, A. and K. Kromp. "Statistical Properties of Weibull Estimators." Journal of Materials Science, 1991. 26(24): p. 6741-6752.

[7] Danzer, R., et al. "Fracture Statistics of Ceramics–Weibull Statistics and Deviations from Weibull Statistics." Engineering Fracture Mechanics, 2007. 74(18): p. 2919-