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Background:

 Speech Emotion Recognition (SER) models often use only the 

speech information of the current time step

 Emotions often depend on previous speech information as 

well as the emotional context of the scene

Emotional corpus collected at UT-Dallas

 Conversations: 74 audio clips (10-20 min) 

taken from podcasts

 Continuous annotations of three emotional 

attributes: arousal, valence, and dominance

 The mean traces are averaged over 0.5 second 

segments to obtain segment labels

 The segment is labeled with the speaker that is 

active the longest during that speech turn

 If two or more speakers are active during the entire 

segment, priority is given to the speaker “speaking” last
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Our Work:

 Utilizes current and previous speech as well as surrounding 

speaker context to train an SER Model for conversations

Training Parameters:

 6,373 acoustic features extracted with openSMILE

 All models trained on arousal, valence, and dominance labels

 The CCC loss is used for the training loss

 The CCC’s of the test conversations are averaged for the 

evaluation metric

 Employ early stopping over the validation set during training

 For the attention mechanism: use 30 previous turns (N=30)

 Zero padding for speech segments that do not have N 

previous segments

 The speaker flags are the speaker numbers (e.g., 0, 1 ,2) 

 If the segment is more than 50% silence or other noises, the 

flag is set to -1
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 Speaker flags do not add enough speaker context

 Create 3D map of the speech segment encodings 

belonging to each speaker at each time step:

 We can use a Convolutional Neural Network and 

Attention to introduce the speaker context to the 

emotional inferences
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Model
(N = 30)

Emotional Attribute

Arousal Valence Dominance

LSTM 0.710 0.281 0.716

Attention 0.334 0.136 0.247

LSTM-Attention (B) 0.744 0.307 0.725

LSTM-Attention (SF) 0.740 0.265 0.742

 The best models are the LSTM-Attention models

 The addition of the speaker flags seems to 

confuse the models trained on arousal and 

valence but aid the dominance model
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