

Web Security
Jace Baker, Nick Ramos, Hugo Espiritu, Andrew Le

Topics

Web Architecture

Parameter Tampering

Local File Inclusion

SQL Injection

XSS

Web Architecture

Web Request Structure

Web Request Structure

● A client requests content
● The server delivers that content
● Stateless protocol

HTTP Request Structure

Simplified Client Request

GET - Method

/index.html - Resource

HTTP/1.1 - Protocol

Host: … - Header Information

GET /index.html HTTP/1.1
Host: csg.utdallas.edu

Simplified Client Request

GET - Method

/index.html - Resource

HTTP/1.1 - Protocol

Host: … - Header Information

GET /index.html HTTP/1.1
Host: csg.utdallas.edu

Simplified Client Request

GET - Method

/index.html - Resource

HTTP/1.1 - Protocol

Host: … - Header Information

GET /index.html HTTP/1.1
Host: csg.utdallas.edu

Simplified Client Request

GET - Method

/index.html - Resource

HTTP/1.1 - Protocol

Host: … - Header Information

GET /index.html HTTP/1.1
Host: csg.utdallas.edu

Simplified Client Request

GET - Method

/index.html - Resource

HTTP/1.1 - Protocol

Host: … - Header Information

GET /index.html HTTP/1.1
Host: csg.utdallas.edu

Simplified Server Response

HTTP/1.1 - Protocol

200 OK - Response Code

Response Headers

Response Content

HTTP/1.1 200 OK
Date: Mon, 15 October...
Server: Apache/1.3.3.7
Content-Length: 512
Connection: close
Content-Type: text/html

<html>
<h1>Hello World!</h1>

</html>

Simplified Server Response

HTTP/1.1 - Protocol

200 OK - Response Code

Response Headers

Response Content

HTTP/1.1 200 OK
Date: Mon, 15 October...
Server: Apache/1.3.3.7
Content-Length: 512
Connection: close
Content-Type: text/html

<html>
<h1>Hello World!</h1>

</html>

Simplified Server Response

HTTP/1.1 - Protocol

200 OK - Response Code

Response Headers

Response Content

HTTP/1.1 200 OK
Date: Mon, 15 October...
Server: Apache/1.3.3.7
Content-Length: 512
Connection: close
Content-Type: text/html

<html>
<h1>Hello World!</h1>

</html>

Simplified Server Response

HTTP/1.1 - Protocol

200 OK - Response Code

Response Headers

Response Content

HTTP/1.1 200 OK
Date: Mon, 15 October...
Server: Apache/1.3.3.7
Content-Length: 512
Connection: close
Content-Type: text/html

<html>
<h1>Hello World!</h1>

</html>

Simplified Server Response

HTTP/1.1 - Protocol

200 OK - Response Code

Response Headers

Response Content

HTTP/1.1 200 OK
Date: Mon, 15 October...
Server: Apache/1.3.3.7
Content-Length: 512
Connection: close
Content-Type: text/html

<html>
<h1>Hello World!</h1>

</html>

Maintaining State

If HTTP is stateless, how does a site
remember me when I’ve logged in?

Cookies - small pieces of data that
your browser stores and sends as
part of the request

Cookies

Cookies are set by the server and sent
back by the client to identify it in later
interactions

Statically Generated Content

Statically Generated Content

● The same information is sent to
any client who requests it

● No application code is run on the
server

● This content is generally:
○ HTML
○ CSS
○ Javascript

Statically Generated Content

HTML CSS

JavaScript
● Code that runs on the client side
● Useful for:

○ Interactive Content (like a game)
○ Making requests to other sites
○ Changing the way the website looks

● Useful for attackers with XSS!
○ Research after as an advanced topic

Dynamically Generated Content

Dynamically Generated Content

● The same information is NOT
sent to any client who requests it

● Application code is run on the
server

● This content often uses:
○ PHP
○ SQL

Dynamically Generated Content

PHP

● Scripting language that runs on
the server

● Can dynamically generate
content for the user

● Can be used by attackers to
execute malicious code on the
server itself

SQL

● Query language that
communicates with the
database

● Useful for user registration, login,
etc.

● Can be used by attackers to read
parts of the database they
shouldn’t be able to

SQL Data Layout

Data is stored similar to an Excel
spreadsheet

Individual entries are rows

Each attribute is a column

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

SQL Example

SELECT * from users WHERE uname = 'Andrew';

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

SQL Example

SELECT * from users WHERE uname = 'Andrew';

SELECT - Request data from the database

* - pull every column

from users - pull from the users table

WHERE <logical condition> - select rows matching this logical condition

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

SQL Example

SELECT * from users WHERE uname = 'Andrew';

SELECT - Request data from the database

* - pull every column

from users - pull from the users table

WHERE <logical condition> - select rows matching this logical condition

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

SQL Example

SELECT * from users WHERE uname = 'Andrew';

SELECT - Request data from the database

* - pull every column

from users - pull from the users table

WHERE <logical condition> - select rows matching this logical condition

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

SQL Example

SELECT * from users WHERE uname = 'Andrew';

SELECT - Request data from the database

* - pull every column

from users - pull from the users table

WHERE <logical condition> - select rows matching this logical condition

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

SQL Example

SELECT * from users WHERE uname = 'Andrew';

SELECT - Request data from the database

* - pull every column

from users - pull from the users table

WHERE <logical condition> - select rows matching this logical condition

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

SQL Example
SELECT * from users WHERE uname = 'Andrew';

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

SQL Example
SELECT * from users WHERE uname = 'Andrew';

uname = 'Andrew'?

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

SQL Example
SELECT * from users WHERE uname = 'Andrew';

TRUE

uname = 'Andrew'?

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

SQL Example
SELECT * from users WHERE uname = 'Andrew';

TRUE

FALSE

uname = 'Andrew'?

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

SQL Example
SELECT * from users WHERE uname = 'Andrew';

TRUE

FALSE

FALSE

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

Topics

Web Architecture

Parameter Tampering

Path Traversal

SQL Injection

XSS

Introduction

● What is it?
○ The act of modifying data sent from a client to a server
○ Example:

■ Modifying data fields in the URL/link
● http://www.example.com/welcome?userId=50 ->

http://www.example.com/welcome?userId=45
■ Submitting a form with invalid values

● See: Demo
● Why is it important?

○ It allows us to send data that server isn’t expecting
■ Data that we control

http://www.example.com/welcome?userId=50
http://www.example.com/welcome?userId=45

HTTP Requests Recap

● 2 main types of requests:
○ GET

■ Request the server for a page
■ The browser “GET”s a webpage when it requests it

○ POST
■ Sends data to the server
■ The browser “POST”s information to the server
■ This is what we can modify

Demo

● A form has dropdowns, fields, and buttons
○ Website might limit what can be submitted or entered
○ Your browser sends what you selected/entered/pressed to the server

● Burp Suite
○ Allows us to modify requests, particularly POST requests
○ Help with setting up Burp:

■ https://nvisium.com/blog/2014/01/10/setting-up-burpsuite-with-firefox-and.html

■ No need for FoxyProxy

https://nvisium.com/blog/2014/01/10/setting-up-burpsuite-with-firefox-and.html

Topics

Web Architecture

Parameter Tampering

Local File Inclusion

SQL Injection

XSS

Introduction

● What is it?
○ A way to access files the author did not mean to make public

● All operating systems have standard folder/directory structure
○ Also applies to programs that you install

● In terms of web security:
○ Web server directory structure
○ Common files that come with web server
○ Developers often use similar naming schemes for files

Introduction (cont.)

● What if we are able to load a file we aren’t supposed to?
○ Example:

■ https://www.google.com/ - simple visit to Google
■ https://www.google.com/robots.txt - access robot file from Google

● If a file or directory is not configured properly, we can access it
○ Files have permissions that allow certain users to read from it
○ Directories also have permissions to allow access

● Why is it important?
○ It allows us to read more information than we should

https://www.google.com/
https://www.example.com/robots.txt

Directory Structure
● Location of index file:

○ /var/www/html/index.html

Directory Structure
● Location of index file:

○ /var/www/html/index.html

Directory Structure
● Location of index file:

○ /var/www/html/index.html

Directory Structure
● Location of index file:

○ /var/www/html/index.html

Directory Structure
● Location of index file:

○ /var/www/html/index.html

Web Server Directory

● A URL/link points to a file or location on a web server
○ www.example.com/index.html

■ This points to a file called “index.html” on the server
■ Your browser loads this file and displays it

● The first “/” in the URL is the base directory/folder of the website/web server
○ www.example.com/
○ www.example.com/users/

■ This points to another directory called “users” within the base directory
■ We can keep going or we can try to find files within that directory

○ www.example.com/users/names.txt
■ This points to a “names.txt” file in the “users” directory

http://www.example.com/welcome.html
http://www.example.com/
http://www.example.com/users/Andrew
http://www.example.com/users/names.txt

Web Server Directory (cont.)

● We can also go up directories
○ Use “../” to go up directories
○ Example:

■ https://www.example.com/../
● Goes up one directory

■ https://www.example.com/../../users/password.txt
● Goes up 2 directories and go into a directory called users, then grab “password.txt”

● Also works when website loads a file into variable
○ https://www.example.com/?file=../../users/password.txt

■ Load a file 2 directories up, in a directory called users, then grab “password.txt”

https://www.google.com/../
https://www.example.com/../../users/file.txt
https://www.example.com/../../users/file.txt

Directory Structure
● Location of index file:

○ /../../../../../../

Directory Structure
● Location of index file:

○ /../../../../../../

Directory Structure
● Location of index file:

○ /../../../../../../

Directory Structure
● Location of index file:

○ /../../../../../../

Demo

● An example:
○ https://www.example.com/?file=../../../../../../../etc/passwd

■ We’re hoping to go all the way up to the root directory then access /etc/passwd

https://www.example.com/?file=../../../../../../../etc/passwd

Topics

Web Architecture

Parameter Tampering

Local File Inclusion

SQL Injection

XSS

SQL Injection

● Modifying a query in the code for malicious side effects
● Can allow us to:

○ Bypass authentication checks
○ Dump all user information

Vulnerable Code - PHP

$user = $argv[0]; //user input

$pass = $argv[1]; //user input

$query = "SELECT * FROM Users WHERE Username = ‘$user’ and password =
‘$pass’;";

$result = pg_query($conn,$query);

Vulnerable Code - PHP - Standard Case

$user = “AzureDiamond”; //user input

$pass = “hunter2”; //user input

$query = "SELECT * FROM Users WHERE Username = ‘AzureDiamond’ and
password = ‘hunter2’;";

$result = pg_query($conn,$query); // Returns the row containing AzureDiamond

Vulnerable Code - PHP - Malicious Case

$user = “me’ OR ‘1’ = ‘1’; --”; //user input

$pass = “hacker”; //user input

$query = "SELECT * FROM Users WHERE Username = ‘me’ OR ‘1’ = ‘1’; --’ and
password = ‘hacker’;";

$result = pg_query($conn,$query); // What does this return?

Vulnerable Code - PHP - Malicious Case
SELECT * FROM Users WHERE uname = ‘me’ OR ‘1’ = ‘1’; --’ and password = ‘hacker’;

 uname= ‘me’ OR ‘1’ = ‘1’; --’ and password = ‘hacker’;?

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

Vulnerable Code - PHP - Malicious Case
SELECT * FROM Users WHERE uname = ‘me’ OR ‘1’ = ‘1’; --’ and password = ‘hacker’;

 FALSE OR TRUE; --’ and password = ‘hacker’;?

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

Vulnerable Code - PHP - Malicious Case
SELECT * FROM Users WHERE uname = ‘me’ OR ‘1’ = ‘1’; --’ and password = ‘hacker’;

 TRUE

uname= ‘me’ OR ‘1’ = ‘1’; --’ and password = ‘hacker’;?

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

Vulnerable Code - PHP - Malicious Case
SELECT * FROM Users WHERE uname = ‘me’ OR ‘1’ = ‘1’; --’ and password = ‘hacker’;

 TRUE

FALSE OR TRUE; --’ and password = ‘hacker’;?

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

Vulnerable Code - PHP - Malicious Case
SELECT * FROM Users WHERE uname = ‘me’ OR ‘1’ = ‘1’; --’ and password = ‘hacker’;

 TRUE

 TRUE

uname= ‘me’ OR ‘1’ = ‘1’; --’ and password = ‘hacker’;?

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

Vulnerable Code - PHP - Malicious Case
SELECT * FROM Users WHERE uname = ‘me’ OR ‘1’ = ‘1’; --’ and password = ‘hacker’;

 TRUE

 TRUE

FALSE OR TRUE; --’ and password = ‘hacker’;?

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

Vulnerable Code - PHP - Malicious Case
SELECT * FROM Users WHERE uname = ‘me’ OR ‘1’ = ‘1’; --’ and password = ‘hacker’;

 TRUE

 TRUE

 TRUE

uname password email

Andrew whatpw acl150030

Nick mypw nor140030

Hugo anotherpw hde130030

users

Vulnerable Code - PHP - Malicious Case

$user = “me’ OR ‘1’ = ‘1’; --”; //user input

$pass = “hacker”; //user input

$query = "SELECT * FROM Users WHERE Username = ‘me’ OR ‘1’ = ‘1’; --’ and
password = ‘hacker’;";

$result = pg_query($conn,$query); // Entire table is returned!

Preventing SQL Injections

Use prepared statements aka parameterized queries

$query = “SELECT * FROM Users WHERE name = ?"

$stmt = $mysqli->prepare($query);
$stmt ->bindParam(1, $name);
$name = $argv[0];
$stmt->execute();

SQL Injection - Demo

Topics

Web Architecture

Parameter Tampering

Local File Inclusion

SQL Injection

XSS

XSS

● Injecting malicious scripts into otherwise benign and trusted websites
● Can allow us to:

○ Steal cookies or other sensitive information used by the browser
○ Rewrite the content of the HTML page

Stored XSS

● Trusted website without sanitized user input is stored in a database
● Attacker can add malicious javascript as input wrapped in html script tags
● Can allow us to:

○ Redirect victim’s browser to a malicious website that steals sensitive
information

Stored XSS - Example

Stored XSS - Alert Box

Stored XSS - Alert Box

Stored XSS - Steal Cookie

Stored XSS - Steal Cookie

Stored XSS - Demo

Why is Web Security so Hard to Get Right?

⇒

Practice Resources

HackTheBox

OverTheWire - Natas

WebGoat

Questions?

