
Introduction to
Reverse Engineering

Ian Brown | Alan Padilla | Ryan Kao

What is Reverse Engineering?

• Reverse engineering – the process of disassembling and analyzing to discover the
concepts involved in manufacture usually in order to produce something similar

- Merriam Webster dictionary

• Many varieties

• Computer Software

• Computer Hardware

• Automobile
We will focus on software reverse engineering

Image credit: Mr. Coffee, Jeep, Roost, Egg Minder

Importance of Reverse Engineering

Software controls almost everything
RE is useful for:

• Learning functionality that is hidden (i.e. malware, proprietary inner
workings, etc)

• Legacy/outdated applications

• Analyze application security

• Kernel vs Microsoft Office

But first...

INTRODUCTION TO FLARE VM

Image Credit: FireEye FLARE Team

What is FLARE VM ?

The Kali of Windows!
First of a kind Windows-based security distribution designed for:
• Malware Analysis
• Incident Response
• Penetration Testing

Does not depend on a specific Windows version or Virtual Machine image.
FLARE VM provides a blueprint to automatically build the VM

Slide Credit: FireEye FLARE Team

Why use FLARE VM?

• FLARE VM offers a:

• Clean

• Reproducible

• Isolated environment

Simple, one click installation…
• http://boxstarter.org/package/url?https://github.eng.fireeye.c
om/raw/peter-kacherginsky/flarevm/master/flarevm_malware.p
s1

Image Credit: FireEye FLARE Team

http://url?
http://master/flarevm_malware.ps1
http://master/flarevm_malware.ps1
http://master/flarevm_malware.ps1

FLARE VM in 30* minutes

Image Credit: FireEye FLARE Team

Small Sample of Tools Installed:

Disassemblers: IDA Free

Debuggers: OllyDbg

Utilities: Wireshark, MD5, Putty, FLOSS, Hexdump, FakeNet-NG

Full list at: https://github.com/fireeye/flare-vm

Quick FLARE VM DEMO

Standardization Issue

Lots of different programming languages

• Most won't easily work with each other

• No language is best for every situation

• Code has no effect until compiled/interpreted

Need a standard way to view actual functionality

Assembly Language

Assembly (asm) language – lowest-level programming language
● Readable by humans
● Intermediary step between higher-level code (like C) and machine code (binary)
● Nearly 1 to 1 correspondence between asm instructions and processor instructions

Large variety of assembly languages (MIPS, x86, SPARC, etc)

We will use x86

x86 Assembly Architecture

History

Developed by Intel for 8086 and 8088 Intel CPU (16-bit)
Still widely used today

• XBOX, Core i3/i5/i7, Windows, Linux, etc.
• Continual refinement and community contributions keep x86 as leading architecture

Little-endian format
32/64-bit versions today
Two main syntax formats: Intel vs AT&T

Intel vs AT&T

Intel
• <instruction> <destination>, <operand(s)>

• No special formatting for immediate values

and registers

• Ex) mov eax, 0xca

• SIZE PTR [addr + offset] for value at address

• Ex) add DWORD PTR [ebp-0x8], 0x5

AT&T
• <instruction> <operand(s)>, <destination>

• $ designates immediate value, % designates

registers

• Ex) movl $0xca, %eax

• -offset(addr) for value at address

• Ex) addl $0x5, -0x8(%ebp)

Because of personal preference, we will be using Intel syntax

Memory and Storage

Because x86 is a low-level language, it frequently interacts directly with
hardware components
Stores "variables" directly to memory

• Registers
• Memory addresses

• Stack
• Heap

Storage Units

Storage size

• Byte (size of a char in C-style languages)

• Word (2 bytes in x86, although can vary by architecture and register size)

• Double word

• Quad word

Registers

Flags

Image Credit: Intel 64 and IA-32 Developer’s Manual

Memory Allocation

Image Credit: Mitch Adair

Memory Allocation

Stack Frames

Instructions

By some estimates, about 9000 x86 instructions

Ready to learn them all?

Important Instructions ctd.

Mathematical instructions

• add eax, 0x5

• sub eax, 0x5

• mul eax, edx : stores value in edx:eax

• div eax, edx : stores dividend in eax, remainder in edx

Important Instructions ctd.

Comparison/Assignment instructions
• cmp eax, 0x10: subtracts 0x10 from eax, check if sign flag (SF) is flipped
• mov eax, edx : move contents of edx into eax
• mov eax, SIZE PTR [edx] : move contents to which edx points into eax

• Similar to pointer dereference in C/C++
• eax = *edx
• [] -> dereference address between the brackets

• lea eax, [ebx+4*edx] : load effective address represented by ebx+4*edx into eax
• Used for getting a pointer to a specific address

Important Instructions ctd.

Comparison/Assignment instructions

• cmp eax, 0x10: subtracts 0x10 from eax, check if sign flag (SF) is flipped

Calling/Conditional instructions

• call 0x8004bc : load address of next instruction onto stack, then function parameters ,
then calls function at address 0x8004bc

• ret : restores next address of previous function (in EIP) and pops all local variables off
stack

• jmp 0x8004bc : unconditional jump to address 0x8004bc; also jl, jle, jge, jg, je

RE Basics

Reversing can be very difficult, especially the first few times

• Persistence and patience are key

• The more you practice, the easier it becomes

• Be one with the assembly

• Fundamental process of reverse engineering

Reversing Mindset

Fundamental Process of RE

Try to reverse

Apply new
knowledge Learn something new

Image Credit: Mitch Adair

TOO MUCH INFO!
Time for some fun...

Example 1

Prologue

● Load address of esp+4 bytes into ecx

● and esp, 0xfffffff0 : makes stack frame

align to 16-bits

● push value of ecx - 4 bytes → push

previous esp onto stack

Essentially realigning frame in order to
account for variable length instructions of
x86

Prologue

Standard function prologue
● Put previous frame base pointer on

stack
● Set new frame base pointer to current

stack pointer location
● *push ecx* - unusual but necessary

due to first 3 instructions
● Allocate 0x14 (20) bytes for local

storage
○ Precomputed by compiler

Prologue

ecx

ebp

ecx-0x4

...

ecx

20 bytes allocated (esp-0x14)

Value Assignment

Let's start with easy instructions: mov/add
3 values assigned to memory locations

• [ebp-0xc] = 0x4 = 4

• [ebp-0x10] = 0x5 = 5

• [ebp-0x14] = 0x2a = 42

2 registers assigned values

• edx = [ebp-0xc] = 4

• eax = [ebp-0x10] = 5

• eax redefined to eax + edx = 9

C code equivalent:
int main() {
 int edx = 4;
 int eax = 5;
 int a = 42;

 eax = eax + edx;
}

Value Assignment on the Stack

...

4

5

42

esp

ebp-0xc

ebp

Jump or not

cmp: compares first operand to second operand
cmp [ebp-0x14], eax = [ebp-0x14] >? eax = 42 >? 9
jle: jumps to address 8048449 if [ebp-0x14] <= eax
Together, cmp and jle form a C-style if statement

Push puts value at 0x80484e4 (“Less than.”) in memory to
be accessed by printf

• Requires subtracting another 12 bytes to store value
Add 0x10 (16) to esp “deletes” local values/variables
mov 1 into eax?

C code equivalent:
int main() {
 int edx = 4;
 int eax = 5;
 int a = 42;

 eax = eax + edx;

 if (eax < a) {
 printf(“Less than.”);
 }
}

Jump or not - Stack

...

4

5

42

esp

ebp-0xc

ebp

[0x80484e4]
“Less than.”

Jump or not - Stack

...

4

5

esp

ebp-0xc

ebp

Clean up

Re-establishes original esp stored address

• Cleans up memory that was allocated to storing values
during function (leave)

Return from function with ret
C code equivalent:
int main() {
 int edx = 4;
 int eax = 5;
 int a = 42;

 eax = eax + edx;

 if (eax < a) {
 printf(“Less than.”);
 }

 return 1;
}

Try it on your own!

Download mysteryprog1

• How many conditional statements are there?

• What C-like conditional structure is formed by the repeated jumps at
the bottom of main?

Example 2

Prologue

Standard function prologue
● Put previous frame base pointer on

stack
● Set new frame base pointer to current

stack pointer location
● Allocate 0x10 (16) bytes for local

storage
○ Precomputed by compiler

Prologue

ebp

...

ecx

16 bytes allocated (esp-0x10)

Main Pt. 1

Let's start with easy instructions: mov/add
2 values assigned to memory locations

• [ebp-0x4] = 0x5 = 5

• [ebp-0x8] = 0xc = 12

Both values pushed on stack, then call to adder
• Referring to earlier diagram of stack frame,

values being loaded as parameters for function
adderC code equivalent:

int main() {
 int a = 5;
 int b = 12;

 adder(a, b);
}

Main Pt. 1 - Stack

5

12

12

esp

ebp-0x4

ebp

5

Adder

Function prologue shows up again
Access parameters by grabbing value at addresses lower in
stack than new ebp
Adds eax and edx and stores result in eax

• eax stores return value
Finally, ends in function epilogue

C code equivalent:
int adder(int a, int b) {
 edx = b;
 eax = a;

 return eax+edx;
}

Main Pt. 2

Deletes top 8 bytes of stack

Value returned from adder (in eax)
and stores result in ebp-0xc

Stores return value, 1, in eax

Deletes local variables and returns
from main

C code equivalent:
int main() {
 int a = 5;
 int b = 12;

 int c = adder(a, b);

 return 1
}

Try it on your own pt. 2!

Download mysteryprog2

Find the flag!

Attacking with RE

Buffer Overflows

• Occurs when memory is written past the area that was allocated for it

• Generally caused by functions that write data without bounds
checking i.e. scanf, gets, strcpy

• Allows attacker to write arbitrary data into stack frame, possibly
overwriting other values or the return pointer

Fuzzing

• Buffer overflows can be discovered by fuzzing

• Fuzzing refers to providing invalid data as input to a program

• Usually it is an automated process by which many different inputs are tried

• Inspect registers of the stack by attaching debugger to program

Shellcode

• Instructions injected by an attacker that are executed by the process

• Injected in binary form (written in hex format)

• Called shellcode because the standard use is to spawn a shell

• Is less practical today due to protections that don’t allow execution of
writable memory (DEP)

Buffer overflow exploitation example

• In a 32 bit x86 linux VM, disable ASLR (address space layout randomization)

• sudo sysctl –w kernel.randomization_va_space=0

• Compile example program without modern protections against stack overflow

• gcc -g -fno-stack-protector -z execstack -o bo1

• gcc –g –m32 –fno-stack-protector –z execstack –o bo1 (if 64 bit linux)

• Install gdb and get gdb peda plugin

• sudo apt-get install gdb

• git clone https://github.com/longld/peda.git ~/peda

• echo "source ~/peda/peda.py" >> ~/.gdbinit

Shows locations of EBP
and ESP registers

In the box is the return
address 0xbffff330 that is
the 4 bytes after the EBP

register

