

NOVEMBER 4-5 TexSAW 2016

6^{th} ANNUAL

TEXAS SECURITY AWARENESS WEEK

ERIK JONSSON SCHOOL OF ENGINEERING \& COMPUTER SCIENCE Celebrating 30 Years
THE UNIVERSITY OF TEXAS AT DALLAS

Presenting Sponsor SStateFarm

The University of Texas at Dallas

Introduction to Cryptography

Jeremiah Shipman Kyle Tillotson
Raman

Outline

- Classical Ciphers
* Hash Functions
- Modern Cryptography
- Symmetric
- Asymmetric
* Hands-On

Cryptography

* Cryptography is the process of writing or reading secret messages or codes. - Merriam Webster
* Midway story

Basic Terminology

- Plaintext/Message - the original message to encrypt.
* Ciphertext - an encrypted message.
* Cipher - an algorithm to convert plaintext to cipher text and vice/versa.
* Key - a word/phrase or string of bits that modifies the enciphering/deciphering process

Caesar Cipher

* Shift/Caesar Cipher - rotate each letter of the plaintext by a fixed amount
* Example:
* Plaintext - SEND HELP
* Key - rotate up by 13
* Ciphertext - FRAQ URYC

Caesar Cipher

* Shift/Caesar Cipher - rotate each letter of the plaintext by a fixed amount
* Example:
* Plaintext - SEND HELP
* Key - rotate up by 13
* Ciphertext - FRAQ URYC

Caesar Cipher

* Shift/Caesar Cipher - rotate each letter of the plaintext by a fixed amount
* Example:
* Plaintext - SEND HELP
* Key - rotate up by 13
* Ciphertext - FRAQ URYC

Caesar Cipher

* Shift/Caesar Cipher - rotate each letter of the plaintext by a fixed amount
* Example:
* Plaintext - SEND HELP
* Key - rotate up by 13
* Ciphertext - FRAQ URYC

Caesar Cipher

* Shift/Caesar Cipher - rotate each letter of the plaintext by a fixed amount
* Example:
* Plaintext - SEN'D HELP
* Key - rotate up by 13
* Ciphertext - FRAQ̃ URYC

Substitution Cipher

* Create a mapping of the alphabet:

Substitution Cipher

* Create a mapping of the alphabet:

$$
\begin{aligned}
& \text { A B C D E F G HI J K L M M NOPQ R S T U V WX Y Z } \\
& \text { C }
\end{aligned}
$$

Substitution Cipher

* Create a mapping of the alphabet:

$$
\begin{aligned}
& \text { C R }
\end{aligned}
$$

Substitution Cipher

* Create a mapping of the alphabet:

$$
\begin{aligned}
& \text { A B CDEFGMI JKLMNOPQRSTUVWXYZ } \\
& \hline \text { CRY }
\end{aligned}
$$

Substitution Cipher

* Create a mapping of the alphabet:

$$
\begin{aligned}
& \text { A|BCDEFGHIJKLMNOPQRSTUVWXYZ } \\
& \text { C R Y P }
\end{aligned}
$$

Substitution Cipher

* Create a mapping of the alphabet:

$$
\begin{aligned}
& \text { A B C DEEFGHI JKLMNOPQRSTUVWXYZ } \\
& \text { CRYPTO }
\end{aligned}
$$

Substitution Cipher

* Create a mapping of the alphabet:

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T

Substitution Cipher

* Substitute each letter of the plaintext.

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T

- Example:
* Plaintext - send reinforcements
* Key - knowledge of the mapping of the alphabet
* Ciphertext - ktdp jtfdoejytbtdlk

Substitution Cipher

* Substitute each letter of the plaintext.

- Example:
* Plaintext - send reinforcements
* Key - knowledge of the mapping of the alphabet
* Ciphertext - ktdp jtfdoejytbtdlk

Substitution Cipher

* Substitute each letter of the plaintext.

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T

- Example:
* Plaintext - send reinforcements
* Key - knowledge of the mapping of the alphabet
* Ciphertext - ktdp jtfdoejytbtdlk

Substitution Cipher

* Substitute each letter of the plaintext.

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T

- Example:
* Plaintext - send reinforcements
* Key - knowledge of the mapping of the alphabet
* Ciphertext - ktdp jtfdoejytbtdlk

Substitution Cipher

* Substitute each letter of the plaintext.

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T

- Example:
* Plaintext - send reinforcements
* Key - knowledge of the mapping of the alphabet
* Ciphertext - ktdp jtfdoejytbtdlk

Frequency Analysis

Vigenere Cipher

* Extend the key to be the length of the plaintext.
* Plaintext $P=P_{1} P_{2} P_{3}$. Ciphertext $C=C_{1} C_{2} C_{3}$.
* Encryption: $\mathrm{C}_{\mathrm{i}}=\left(\mathrm{P}_{\mathrm{i}}+\mathrm{k}_{\mathrm{i}}\right) \bmod 26$
* Decryption: $P_{i}=\left(C_{i}-k_{i}\right) \bmod 26$

Vigenere Cipher

* To encrypt:

* Extend the key to be the length of the plaintext.
* Use the Vigenere Table to get the ciphertext.
- Example:
* Plaintext: NINE ONE ONE AND ONE ONE TWO
* Key: FOUR FOU RFO URF OUR FOU RFO
* Ciphertext: SWHV TBY FSS UEI CHV TBY KBC

Vigenere Cipher

				B				F													S						
				C	D	E	F	G	H	1		K	L	M	N	O	P	Q	R	S	T	U					
			c	D	E	F		H	1		K	L							S	T U							
				E	F	G	H	1	J	K	L	M	N	0	P	Q		S	T	U		W	Y	Y			C
			E	F	G	H	1		K	L	M	N	0		Q	R	S	T	U	V			Y Z				
				G	H	I		K	L	M	N	O	P	Q	R	S		U		W							
				H			K	L	M	N	0	P	Q	R	S			v	W	X Y	Y	Z	A B	B			
			H	1		K	L	M	N	O	P	Q	R	S	T	U	V	W		Y	Z	A	B				
				J	K	L	M	N	O	P	Q	R	S	T	U				Y	Z	A	B		D			
				K	L	M	N	O	P	Q	R	S	T	U		W		Y	Z	A	B	C	D E	E			
			K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E				
			L	M	N	0	P	Q	R	S	T	U	V		X	Y		A	B	C				G			
			M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G				
			N	O	P	Q	R	S							Z			C	D								
			O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B		D	E	F	G	H					
				Q	R	S	T	U		W		Y	Z	A	B			E	F	G	H	1		K			
			Q	R	S	T				X	Y	Z		B	C			F									
			R	S	T	U				Y	Z	A	B		D	E		G	H	1		K L					
			S	T	U				Y	Z	A	B	C		E			H		JK	K	L M	M N	N			
							X	Y			B																
			U	V		X	Y	Z	A	B	C	D	E		G	H		J	K	L M	M	N					
				W		Y	Z	A	B	C	D	E	F		H			K		M	N	0 P	P Q				
			x	X	Y	Z	A	B	C	D		F															
					Z	A		C	D	E	F				J			M	N	0 P	P	Q					
				Z		B																	S				

Vigenere Cipher

* To encrypt:

* Extend the key to be the length of the plaintext.
* Use the Vigenere Table to get the ciphertext.
- Example:
* Plaintext: NNINE ONE ONE AND ONE ONE TWO
* Key: FOUR FOU RFO URF OUR FOU RFO
* Ciphertext: SWHV TBY FSS UEI CHV TBY KBC

Vigenere Cipher

Vigenere Cipher

* To encrypt:

* Extend the key to be the length of the plaintext.
* Use the Vigenere Table to get the ciphertext.
- Example:
* Plaintext: NINE ONE ONE AND ONE ONE TWO
* Key: FCIUR FOU RFO URF OUR FOU RFO
* Ciphertext: SWHV TBY FSS UEI CHV TBY KBC

Vigenere Cipher

Vigenere Cipher

* To encrypt:

* Extend the key to be the length of the plaintext.
* Use the Vigenere Table to get the ciphertext.
- Example:
* Plaintext: NINE ONE ONE AND ONE ONE TWO
* Key: FOL'R FOU RFO URF OUR FOU RFO
* Ciphertext: SWHV TBY FSS UEI CHV TBY KBC

Vigenere Cipher

Vigenere Cipher

Vigenere Cipher

- To break:
* Look for group(s) of three characters that regularly repeat.
* Find a common factor for the distance(s) between repeating groups.
* Do frequency analysis of subsets of the characters.

Key:
 Plaintext CRYPTOISSHORTFORCRYPTOGRAPHY
 Ciphertext: CSASTPKVSIQUTGQUCSASTPIUAQJB

Transposition Ciphers

* Transposition Cipher - a cipher that shifts the original position of each plaintext character. The ciphertext is a permutation of the plaintext.
* Rail Fence Cipher
- Route Cipher

Rail Fence Cipher

* Plaintext is written downwards on "rails" of an imaginary fence, then written upwards when the bottom is reached.
* Plaintext: We are discovered. Flee at once.

Route Cipher

* The plaintext is written on a grid of given dimensions and padded with low-frequency characters.

W	R	I	O	R	F	E	O	E
E	E	S	V	E	L	A	N	J
A	D	C	E	D	E	T	C	X

* The key is how you maке me cipпепехt: "Spiral counterclockwise, starting from the top right."
* Ciphertext: EOEFROIRWEADCEDETCXJNALEVSE

Route Cipher

* The plaintext is written on a grid of given dimensions and padded with low-frequency characters.

W	R	I	O	R	F	E	O	E
E	E	S	V	E	L	A	N	J
A	D	C	E	D	E	T	C	X

* The key is how you mаке ппе cipпerext: "Spiral counterclockwise, starting from the top right."
* Ciphertext: EOEFROIRWEADCEDETCXJNALEVSE

Route Cipher

* The plaintext is written on a grid of given dimensions and padded with low-frequency characters.

W	R	I	O	R	F	E	O	E
E	E	S	V	E	L	A	N	J
A	D	C	E	D	E	T	C	X

* The key is how you maке me cipпепехt: "Spiral counterclockwise, starting from the top right."
* Ciphertext: EOEFROIRWEADCEDETCXJNALEVSE

Hash Functions

- Used for integrity, signatures, and password storage.
* Given a bit string of any length, produces a bit string of length n .
* Properties of a good hash function:
- It is impossible to reverse.
* It gives a fixed-sized output.
* Changing one bit of the message changes the hash completely.
- Hard to find collisions.

Hash Functions

* md5
* extremely vulnerable to collisions
- vulnerable to rainbow tables
- fast (bad)
* sha1
* less vulnerable to collisions, but still vulnerable
* also vulnerable to rainbow tables

Hash Functions

* Password Storage - need slow hashing algorithm
* bcrypt, PBKDF2
* bcrypt - 156 guesses per second (from security.stackexchange)
* md5 - over 1 billion guesses per second (from security.stackexchange)

Encodings

* Simple encodings of text
* ASCII - hello
* Binary - 01101000011001010110110001101100 01101111
* Hex - Ix68\x65\x6c|x6c|x6f
- Base64-aGVsbG8=

ASCII

Source: www.LookupTables.com

Base64

* Used to safely encode ASCII characters such as 10 and 13 (return and newline characters)
* Uses character set $\{$ A..Z, a..z, 1-9, +, /\} and = for padding
- $2^{6}=64$
* To encode, ASCII is converted to hex, and every 6 bits of hex is converted to its Base64 character

Base64

Value	Char	Value	Char	Value	Char	Value	Char
0	A	16	Q	32	g	48	w
1	B	17	R	33	h	49	x
2	C	18	S	34	i	50	y
3	D	19	T	35	j	51	z
4	E	20	U	36	k	52	0
5	F	21	V	37	1	53	1
6	G	22	W	38	m	54	2
7	H	23	X	39	n	55	3
8	I	24	Y	40	\bigcirc	56	4
9	J	25	Z	41	p	57	5
10	K	26	a	42	q	58	6
11	L	27	b	43	r	59	7
12	M	28	c	44	s	60	8
13	N	29	d	45	t	61	9
14	0	30	e	46	u	62	+
15	P	31	f	47	v	63	1

Base64

Text content	M								a								n							
ASCII	77 (0x4d)								97 (0x61)								110 (0x6e)							
Bit pattern	0	1	0	0	1	1	0				1	0	0	0	0	1	0	1	1	0	1	1	1	0
Index	19						22							5					46					
Base64-encoded	T							W					F						u					

Text content	M								a															
ASCII	77 (0x4d)								97 (0x61)								0 (0x00)							
Bit pattern	0	1	0	0	1	1	0	1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0
Index	19						22						4						0					
Base64-encoded	T							W					E						=					

XOR

* XOR = exclusive-OR
- A xor $\mathrm{B}=\mathrm{C}$ <=> B xor C = A
* Plaintext xor Key = Ciphertext <=> Ciphertext xor Key = Plaintext <=> Plaintext xor Ciphertext = Key

A	B	$A \underline{\bigvee} B$
T	T	F
T	F	T
F	T	T
F	F	F

One-Time Pad

* Used with a random secret key.
* Both parties must have the key.
* The key must be the same length as the plaintext.
* Used by the NSA and KGB.

One-Time Pad

One-Time Pad

$$
\begin{aligned}
& \begin{array}{cccccccccc}
& \mathrm{E} & & \mathrm{Q} & \mathrm{~N} & \mathrm{~N} & \mathrm{~V} & & \text { Z } & \text { ciphertext } \\
4 & \text { (E) } & 16 & \text { (Q) } & 13 & \text { (N) } & 21 & \text { (V) } & 25 & \text { (Z) } \\
\text { ciphertext }
\end{array} \\
& \begin{array}{llllll}
-19 & 4 & 11 & 11 & 14 & \text { ciphertext - key }
\end{array} \\
& =7 \text { (H) } 4 \text { (E) } 11 \text { (L) } 11 \text { (L) } 14 \text { (O) ciphertext - key (mod 26) }
\end{aligned}
$$

One-Time Pad Complications

* The key must be completely random.
- The key must be known by both parties.
* The key can only be used once, so if you want to send a message to n people, you will need n keys.
* The key must be kept secret.

Modern Ciphers

- Symmetric Key Encryption
* Uses the same key to encrypt and decrypt
* Alice and Bob share the same key.
* Asymmetric Key Encryption
* Uses two keys: one to encrypt and one to decrypt.
* Alice has a public key and a private key.
* Bob has a public key and a private key.

Symmetric Key Encryption

* Share a secret key among two or more parties
* DES (Data Encryption Standard)
* Uses a 56-bit key
* Standard from 1979 to 1990s
* AES (Advanced Encryption Standard)
* Uses 128, 192, or 256-bit key
* Standardized in 2001

Asymmetric Key Encryption

- Asymmetric Public Key Cryptography
* Used today to encrypt or sign messages
* Uses a private key and a public key

RSA Algorithm

* Relies on the complexity of factoring large numbers
- Take two primes, p, q, and find $\mathrm{N}=\mathrm{pq}$.
* Find Phi $(N)=(p-1)(q-1)$.
* Choose e such that $1<e<\operatorname{Phi}(N)$ and e and N share no common factors.
* Find d such that $(d e) \bmod \operatorname{Phi}(N)=1$.
* Public Key is (e, N).
- Private Key is (d, N).

RSA Encryption

* To encrypt, convert message M into hex/binary and calculate $\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{N}$, where C is the ciphertext.
- To decrypt C: $\mathrm{M}=\mathrm{C}^{\mathrm{d}} \bmod \mathrm{N}$.
- Difficulty to crack depends on the key length.

Uses of RSA

* Encrypt email with the receiver's public key
- Sign email by encrypting with the sender's private key
* Bloat NSA servers
* Dependent upon the infeasibility of factor large numbers.
- Make sure you keep your private key a secret.

NOVEMBER 4-5 TexSAW 2016

6^{th} ANNUAL

TEXAS SECURITY AWARENESS WEEK

ERIK JONSSON SCHOOL OF ENGINEERING \& COMPUTER SCIENCE Celebrating 30 Years
THE UNIVERSITY OF TEXAS AT DALLAS

Presenting Sponsor SStateFarm

